

$B_{t+1} = G + R - F - M$

Traditional approach to fisheries management

$$B_{t+1} = G + R - F - M$$

- Original US federal fisheries legislations focused purely on regulation of F to obtain optimum yield, under the assumption that all "surplus production" was really surplus
- Stakeholders limited to
 - Commercial fishery interests
 - Managers (protecting societal interest)

 $B_{t+1} = G + R - (F_1 + F_2) - M$

Stakeholders with multiple fleets

$$B_{t+1} = G + R - (F_1 + F_2) - M$$

- Management goals can become more complex – yield and allocation, but tools remain constant
- Stakeholders include
 - Commercial
 - Recreational
 - Managers (protecting societal interests)
 - Allied interests
 - Boat industry
 - Tackle industry

 $B_{t+1} = G + R - (F_1 + F_2) - (M + M_2)$

Multispecies stakeholders

 $B_{t+1} = G + R - (F_1 + F_2) - (M + M_2)$

- Traditional approach still valid
- BUT, biomass reference points are adjusted upwards to allocate biomass to predators
- Stakeholders include
 - Commercial
 - Recreational
 - Managers (protecting societal interest)
 - Predator stakeholders

 $B_{t+1} = G + R' - (F_1 + F_2) - (M + M_2)$

Habitat issues

$$B_{t+1} = G + R' - (F_1 + F_2) - (M + M_2)$$

- FCMA include essential fish habitat, but provided no teeth to the concept
- ESA does have teeth, but because of that is rarely used in fisheries
- Traditional fisheries approaches would adjust reference points to account for R', but not change goals
- No new stakeholders

Alternative approaches to habitat issues in fisheries

- Are there additional stakeholders?
 - Preventing loss / Restoring habitats
 - Land use planning, Other government agencies, NGOs, restoration organizations
- Case study: Power plant impingement
 - Cooling water intakes impinge substantial numbers of early life stages of fish
 - How has society asked power plant operators to respond
 - Avoidance technologies
 - Sponsor large scale research efforts VEE, HRF
 - Stock enhancement efforts
 - Habitat restoration

Seek to offset production loss

PSE&G Delaware Bay

Delaware Ecosim Model

Biomass Lost if Restoration Not Conducted

Frisk et al. (submitted). Ecol. Appl.

 $B_{t+1} = G' + R' - (F_1 + F_2) - (M + M_2)$

Water quality viewpoint

- Traditional fisheries approaches would adjust reference points to account for G', but not change goals
- No new stakeholders

 $B_{t+1} = G' + R' - (F_1 + F_2) - (M + M_2)$

Alternative water quality view

- Are there additional stakeholders?
 - Preventing / Restoring water quality changes
 - Land use planning, Other governmental agencies, Agricultural and industrial stakeholders, NGOs, ecological organizations
- Case study: CBP
 - Long term attempt to reverse decline in water quality in CB via comprehensive, watershed scale management.

 $B_{t+1} = G' + R' (F_1 + F_2) - (M + M_2)$

Challenges to identifying stakeholders for EBFM

- What comes first goal or stakeholders
 - The stakeholders you have in the room will affect the state goal or vision
- Given a goal, how is allocation determined
 - Allocation is often the most contentious issue in fisheries management because it is often not a scientific question
- Given an allocation, how is performance determined
 - What is monitored, and how is it related back to the goals