Climate Change in Maryland What You Need to Know

Lost in Translation: Linking Climate Science to Local Communities April 23, 2012

Donald F. Boesch

National Climate Impact Assessments

CLIMATE CHANGE IMPACTS ON THE UNITED STATES

THE POTENTIAL CONSEQUENCES OF CLIMATE VARIABILITY AND CHANGE

Overview

National Assessment Synthesis Team

> US Global Change Research Program

www.usgcrp.gov/usgcrp/nacc/

Global Climate Change Impacts in the United States

.5. GLOBAL CHANGE RESEARCH PROGRAM

www.globalchange.gov/

America's Climate Choices

nas-sites.org/americasclimatechoices/

Bottom-line Conclusions

These risks indicate a pressing need for substantial action to limit the magnitude of climate change and prepare for adapting to its impacts.

Global Climate Change Impacts in the United States

Risks Increase with Emissions

Number of Days Over 100°F

Number of Days										
<	10	20	30	45	60	75	90	105	>120	

www.globalchange.gov/

Higher Emissions Scenario 2080-2099

Lower Emissions Scenario, 2080-2099

Commission on Climate Change

- Comprehensive Climate Change Impact Assessment
- Comprehensive Greenhouse Gas and Carbon Footprint Reduction Strategy
- Comprehensive Strategy for Reducing Maryland's Climate Change Vulnerability

ARYLAND Maryland's Climate Action Plan

- State goals for reducing GHG emissions
- 42 policy options for achieving goals binned by effectiveness and feasibility
- Steps toward adaptation (integrated planning, vulnerable infrastructure, building codes, insurance, etc.)
 - Greenhouse Gas Reduction Act of 2009 (25% reduction by 2020)

www.mde.state.md.us/programs/Air/ClimateChange/Page s/Air/climatechange/legislation/index.aspx

Global Warming and Smart, Green & Growing the Free State

Global warming is already here. Maryland's climate will be much warmer later in the century.

Precipitation will very likely increase during the winter and spring but hotter temperatures are likely to create drier conditions during the summer.

Sea level is likely to rise at least twice as fast as it did during the 20th century.

Chesapeake Bay restoration will be made more challenging by climate change.

Substantially reducing greenhouse gas emissions is required to avoid the www.umces.edu/applying-science/global-warning-free-state-highlights

Consequences Already Evident in the Chesapeake Bay

Chesapeake Bay has warmed by more than 2°F Najjar et al. 2010. *Estuarine, Coastal, Shelf Sci.* 86:1

Sea level rose by more than one foot over a century

Milder Winters, Much Hotter Summers

Projected Changes in Precipitation

Water Resources

- Slightly more precipitation overall but mostly in winter & spring
- Summer droughts and downpours more frequent
- Soil moisture limiting agriculture; increased irrigation demand
- Baltimore supplies safe, Potomac River uncertain
- Will not alleviate overdrawing of ground water

Water in 2050?

Roy et al. 2012 *ES&T*

Sea-level Rise Will Redraw Map

Van den Broeke et al. 2011 Surv. Geophysics

Surface Mass Balance 1989-2009

Year

Contribution to Sea Level Rise

Poles Matter

MARYLAND Sector Based Adaptation Smart, Green & Growing

Affected Sectors	Climate Stressor	Climate Vulnerability	Adaptation Strategies
Water Resources	Changes in precip.Extreme events	Decreased water supplyIncreased flooding	Create water marketsImprove flood control
Bay/Aquatic Ecosystems	Sea level riseIncreased water temp	Increased salinityHabitat loss	Install "living shorelines"Protect critical habitat
Human Health	Increased air temp.Extreme events	 Vector-borne illness Heat-related health effects 	 Designate "cooling centers" Vector-borne surveillance
Agriculture	Changes in precip.Sea level rise	DroughtSalt-water intrusion	Plant salt tolerant cropsDrought management
Forest/Terrestrial Ecosystems	Changes in precip.Increased air temp.	Disease, FireSpecies shifts	Fire mgmt. and controlInvasive species mgmt
Growth & Infrastructure	Changes in precip.Sea level rise	 Increased population growth Increased flooding 	 "Smart" site and building design Retrofit storm water mgmt.
Coastal Zone	Sea level riseExtreme events	 Submergence of low- lying lands Increased coastal flooding 	 Protect coastal infrastructure Increase natural vegetative buffers
Scientific	Assessment	Adaptation: Phase I	Adaptation: Phase II

Environmental Sustainability

Programs Undergraduate Graduate Research K-16 Priorities

Practices Sustainability GHG reductions Energy efficiency Community leadership

Policies Climate Change Smart Growth Bay Restoration

MARYLAND Smart, Green & Growing

Maryland and Delaware Climate Change Education Assessment and Research K-12 Education (integrated with STEM, RTTT, Next-Generation Science Standards, and Environmental Literacy Requirements)

- Higher Education (sustainability literacy, pipeline)
- Informal Education (museums, aquaria, outdoor centers, media)

www.madeclear.org/

Questions or Comments?

boesch@umces.edu