

Presentation Outline

Biofouling

Photo: New York Sea Grant

Biofouling Vector Process

Biofouling Vector Process

Presentation Outline

45% of marine introductions worldwide are linked (unambiguously) to biofouling

Data:

1781 introductions by invertebrates and algae worldwide

Biofouling Vector strength...

...does not appear to be diminishing over time

Data from Davidson et al (in prep)

In North America, 171 introductions out of 316 were possible hull fouling transfers

Data: Fofonoff et al (2003) Invasive species vectors and management (Chapter 7)

Recently detected introductions

Species recorded in ship biofouling

Data from 20 studies

904 species 1381 records

Vector strength of biofouling

Biofouling is a potent vector

A transfer mechanism of diverse assemblages

It is a contemporary vector

Presentation Outline

Biofouling of containerships in Oakland, Ca

Biofouling extent on hulls

Ship Hulf fouling

Rudders MAY 29 2006 1:33:29 PM

Dry dock support strips (dock block areas)

Photo: Hay & Dodgshun (1997) Seafood New Zealand (May pp 13-14)

Niche areas on ships

Bilge keels

Bow and stern thrusters

Dock block areas

Gratings

Intake pipes

Internal sea water systems

Ladder holes (barges)

Propeller articulations and covers

Propeller shafts

Propellers

Retractable propulsion units

Rudder articulations

Rudders

Sea-chests

Stabilizer fins

Age of antifouling paint

duration since previous dry-docking (months)

Commercial ships

Items to keep in mind regarding management

Niche areas

+

dry-dock durations (antifouling paints)

+

Unusual behavior (e.g. lay ups)

Presentation Outline

Stochastic vessels

- 1) Occasional vessel movements under unusual circumstances
- 2) Marine platforms, floating docks, laid-up barges, decommissioned ships
- 3) i.e. very different from regular commercial shipping

Example

Oil platform
Japan to New Zealand
68 day tow
17 species
12 barnacles

Study: Foster & Willan (1979) NZ J Mar FW Res 13: 143-149

Yet another example

'Ghost' fleet ships

Obsolete ship vector risk?

Commercial ships

Obsolete ships

Hull maintenance

Voyage speed

Departure port duration

Arrival port duration

Obsolete ships: case study

Davidson et al (2008) Diversity & Distributions 14: 518-529

Biofouling extent

Biofouling richness

pre-voyage vs post-voyage

Number of samples

Davidson et al (2008) Diversity & Distributions 14: 518-529

Stochastic vessels

Long lay up duration

+
Almost no hull maintenance
+
Slow voyage
+
Interoceanic event
+
Duration at destination port

very high risk of species transfers

Photo: Ashley Coutts, from Floerl & Coutts (2009) Mar Poll Bull 58: 1595-1598

Presentation Outline

San Francisco Bay Study

Variable fouling among vessels

High number of heavily fouled vessels

Data: Davidson et al (2010) submitted

Just 15% of boaters said they take boat trips outside of the Bay

More than 150,000 boats are registered in adjacent counties

Study in Ketchikan Alaska

Transient vessels only

Ruiz, Ashton, Davidson (in progress) Transient boats as vectors of marine species to Alaska

Recreational boats

Large fleet of recreational boaters

Variable boater maintenance

Long periods in marinas

+

Proximity to other vectors

AIS prevalence in marinas

Risks of species transfers

Photo: Damien Offer in Minchin & Sides (2006) Aquatic Invasions 1:143-147

Presentation Outline

Management Strategies & Policy

US Code of Federal Regulations (33 CFR 151) "remove fouling....on a regular basis"

Best practice management (Australia)

State rules for in-water cleaning & ship disposal

Clean marina and boat fouling management

Boat lifts

Boat bath system

e.g. Ghost fleet locations

in-water cleaning with underwater vacuum & filter

Hull 'wrapping' (polyethylene wrap)

Removal from water

Time is of the essence

Why use vector management for hull biofouling?

- prevention rather than cure
- multi-species rather than mono-species
- cost effective
- Existing tools are effective
- Eradication/control <u>must address vectors</u> anyway

Thanks!

Supervisors: Greg Ruiz & Mark Sytsma

Colleagues:

- @ Portland State University
- @ Smithsonian (SERC)

Fieldwork: Shipping industry Boating community

Funding:

California State Lands
Commission
US Maritime Administration
US Coast Guard
Alaska Dept Fish & Game

& Maryland Sea Grant